A matrix diagonal is a diagonal line of cells starting from some cell in either the topmost row or leftmost column and going in the bottom-right direction until reaching the matrix's end. For example, the matrix diagonal starting from mat[2][0], where mat is a 6 x 3 matrix, includes cells mat[2][0], mat[3][1], and mat[4][2].
Given an m x n matrix mat of integers, sort each matrix diagonal in ascending order and return the resulting matrix.
Example 1:
Input: mat = [[3,3,1,1],[2,2,1,2],[1,1,1,2]]
Output: [[1,1,1,1],[1,2,2,2],[1,2,3,3]]
Constraints:
m == mat.length
n == mat[i].length
1 <= m, n <= 100
1 <= mat[i][j] <= 100
S0lution:
class Solution {
public int[][] diagonalSort(int[][] mat) {
for(int i=0;i<mat.length;i++)
{
sortdiagnol(mat,i,0);
}
for(int j=0;j<mat[0].length;j++)
{
sortdiagnol(mat,0,j);
}
return mat;
}
public void sortdiagnol(int[][] mat, int m, int n)
{
int row = mat.length;
int col = mat[0].length;
ArrayList<Integer> list = new ArrayList<>();
for(int i=m,j=n; i<row && j<col; i++,j++)
{
list.add(mat[i][j]);
}
Collections.sort(list);
for(int k:list)
{
mat[m++][n++]=k;
}
}
}
Comments