top of page
Search

Longest Increasing Path in a Matrix

Updated: Apr 10, 2021

Given an m x n integers matrix, return the length of the longest increasing path in matrix.

From each cell, you can either move in four directions: left, right, up, or down. You may not move diagonally or move outside the boundary (i.e., wrap-around is not allowed).


Example 1:

Input: matrix = [[9,9,4],[6,6,8],[2,1,1]]
Output: 4
Explanation: The longest increasing path is [1, 2, 6, 9].

Example 2:

Input: matrix = [[3,4,5],[3,2,6],[2,2,1]]
Output: 4
Explanation: The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Example 3:

Input: matrix = [[1]]
Output: 1

Constraints:

  • m == matrix.length

  • n == matrix[i].length

  • 1 <= m, n <= 200

  • 0 <= matrix[i][j] <= 231 - 1

Solution:


public class Solution {
    public static final int[][] dirs = {{0, 1}, {1, 0}, {0, -1}, {-1, 0}};

public int longestIncreasingPath(int[][] matrix) {
    if(matrix.length == 0) return 0;
    int m = matrix.length, n = matrix[0].length;
    int[][] dp = new int[m][n];
    int max = 1;
    for(int i = 0; i < m; i++) 
    {
        for(int j = 0; j < n; j++) 
        {
            int len = dfs(matrix, i, j, m, n,dp);
            max = Math.max(max, len);
        }
    }   
    return max;
}

public int dfs(int[][] matrix, int i, int j, int m, int n,int[][] dp) 
{
    if(dp[i][j]!=0) return dp[i][j];
    int max = 1;
    for(int[] d: dirs) 
    {
        int x = i + d[0];
        int y = j + d[1];
        if(x < 0 || x >= m || y < 0 || y >= n || matrix[x][y] <= matrix[i][j]) continue;
        int len = 1 + dfs(matrix, x, y, m, n,dp);
        max = Math.max(max, len);
        
    }
    dp[i][j] = max;
    return max;
}
}

33 views0 comments

Recent Posts

See All

Comments


bottom of page